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AbslracL A geomelric classilicalion of dugencrate time-dependcnl Lagrangian syslems is 
given and (he reduction of e~olulion space is analysed. General properlies of semiregular 
Lagrangians (lype 11) are discmud and panicular attention is paid to the reduction of 
mmplelely degenerate lagrangians (type 111) which are considered in detail. 

1. Intmduction 

Degenerate Lagrangians are ubiquitous in physics and extensive literature has been 
devoted to discussing them from several points of view and for scveral purposes. The 
study of the reduction of evolution space of an autonomous degenerate Lagrangian 
was initiated in a previous paper [4]. The reduction process involves quotienting out 
the gauge degrees of freedom associated with the kernel of the Cartan 2-form defined 
by the Lagrangian function, and with studying the existencc, or non-existence, of a 
non-degenerate Lagrangian system on the quotient space. Apart from some technical 
restrictions on the family of degenerate Lagrangians suitable for such study (the 
most restrictive from the physical point of view is the non-allowance of secondary 
constraints) it was proved that only a special class of these (called type II) are good 
candidat&for the purposes of rciuction. One of the most interesting by-products 
of this program was to make explicit the existence of non-trivial constraints on the 
dimension of the gauge algebra (the Lie algebra of vectors lying in the kernel of the 
Cartan form). It  happens that type 11 Lagrangians are the most similar to regular 
Lagrangians; for instance they are thc non-regular Lagrangians having the highest- 
rank Cartan form and they always possess a second-order differential equation (SODE). 

The program started in [4] was unlinishcd, no t  only because generic degenerate 
Lagrangians (those of type 111) were not considered, but because the discussion was 
concentrated in the autonomous casc. Recently, new ideas have been introduced 
in the discussion of time-dependent degenerate Lagrangians [2] showing that new 
aspects arise in this context that extend in a non-trivial way the rcsults in [4]. 

In this paper we will revisit the program of reduction of degenerate Lagrangians 
considering from the beginning the non-autonomous case, and concentrating our 
attention on the generic case, i.c. not only in the semiregular situation. First of 
all we will describe the classification of non-autonomous Lagrangians extending the 
classification in [4]. We will investigate in general the process of reduction of evolution 
space as a second step and, afterwards, we will study in marc detail the reduction 
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of type I1 Lagrangians and special types of type I11 Lagrangians, the completely 
degenerate and those having a gauge distribution of almost tangent type, 

The organization of the paper is as follows. Sections 2 and 3 are devoted to 
reviewing general notions on the geometry of evolution space and to establishing the 
classification of degenerate non-autonomous Lagrangians systems. In section 4 we 
describe the general reduction program for degenerate non-autonomous Lagrangian 
systems and in particular we will discuss type 11 and several families of type 111 
urgla.rlgrclrw 111 JU"JCL.LLVIU *.I Ol lU  L1.L. 

L A lbort and J Munh-Solano 
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2. Geometric structures on evolution space 

21. Some natural tensorfields on J' ( R ,  Q )  

Let Q be a manifold of dimension m, the configuration space of a dynamical system 
with local coordinates qi, and TQ the tangent bundle of Q with natural coordinates 
q ' ,q ' .  The evolution space for time-dependent mechanical systems is the first jet 
bundle of smooth maps from W to Q, denoted by J L ( R ,  Q) and, as is well known, 
there exists a canonical isomorphism between J ' ( W ,  Q)  and TQ x R. Local mor- 
dinates in evolution space are simply t ,  q ' ,  ci'. Therefore in what follows, when we 
want to refer to the evolution space, we will write TQ x R. 

Let TQ : TQ x R + Q x R be the projection induced by the canonical projection 
T ~ :  TQ + Q and the identity on R. Then ./'(U!, Q) becomes in this way a vector 
bundle over Q x R with projection map FQ and fibres the tangent spaces T,Q. We 
define the vertical bundle I/( TQ x R )  as thc sub-bundle ker iQ. of T(  TQ x R),  i.e. 
the set of vectors V E T(  TQ x R )  such that ip+( 1') = 0. Locally, a vertical vector 
field has the form V = Vi(q,G,t)i3/a$. 

There are several geometrical structures on the evolution space, some arising 
naturally in TQ x iR and some associatcd with a given function L. Most of them 
are related to the canonical, integrable, almost tangent structure on TQ, the vertical 
endomorphism S, a rank-m ( I , ] )  tensor field on TQ such that ker S = I m  S and 
whose Nijenhuis tensor N ,  vanishes. In natural coordinates, the local expression for 
S is given by 

. .  

The other main geometrical ingredient (if 7'Q is thc Liouville vector field A 
which is the infinitesimal generator of the dilations along the fibres on TQ and 
is locally expressed by A = fj'3/8+'. In a precise Sense S and A are the main 
geometrical structures on TQ bccausc under  certain conditions thcy characterize the 
tangent bundle T Q  (see [6] and 181). 

On the other hand, in TQ x R there exists, apart rrom the Liouvillc vector field 
A, a canonical tensor field of type (1, 1) given by (see IS] for more details on the 
geometly of J * ( R , Q ) )  
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We can observe that rank 3 = m, sz = 0 but it is not integrable, N* = 
-S c3 d t  # 0. Locally, using the family of local-contact 1-forms 8' = d q i  - $d t ,  we 
can write S = aiai.' 8 e'. 

Alternatively, we can introduce a different sort of structure, an almost s-tangent 
structure [lo]. Let us recall that an almost s-tangent structure on a (2m + 1)- 
dimensional manifold A4 is a triple (S ,  r , T ) ,  where 3 is a tensor field of type (1, l), 
T is a 1-form and y a vector field on M such that (i) i,r = 1, (ii) Sz = y 8 7 ,  and 
(iii) rank 3 = m + 1. An almost s-tangent structure is called integrable if N j  = 0 
and T is closed. It is obvious that the triple (S,  d t , a / a l )  with 

a 
at S = S +  - B d t  (3) 

defines an almost s-tangent structure on T Q  x EX. It is possible to show that an 
integrable almost s-tangent structure characterizes T Q  x Iw [3]. 

There are several invariant definitions of sccond-order differential equations in 
evolution space. A vector field r in the evolution space TQ x Iw is called a second- 
order differential equation (sODE for short), if s( r) = A and i,dt = 1. Clearly the 
local expression for a SODE is 

and it is clear that r is a SODE if S(r )  = o and s(r) = A. 
We will collect all the information on the structure of the kernel and the image 

of the different (I, 1) tensor fields S .  .? and S defined so far in the following lemma. 

Lemma 1. With the definitions above, we have 
(i) ker S = V( TQ x Iw) @ TR 
(ii) I m  S = V ( T Q  x EX)  
(iii) ker 
( i v ) I m ~ = V ( T Q x I W ) @ T R  
::') !m s = I/(?-& x ") 
(vi) 3 is zero over vertical vector fields and  SOD^ 

= V ( T Q  x R)  

22. Lagrangian sysienis 

Let L : T Q  x R - R be a smooth function. The Cartan I-form associated with L is 
given by 

- 
0, = L d t  + d L 0 5 (5) 

and the Cartan 2-form associatcd with L is the exterior derivative of e,, R, = d e , .  
The 2-form R L  together with ( I f  will somctimcs define a cosymplectic structure [ l l ]  
on the evolution space 7 Q  x R. In fact, a cosymplcctic structure (or an  almost-contact 
srrcacre) 2 (2,~; + !)-di-efisiofi-! %ani!'&! );I is 2 trinlr. ".r.- i ,..~ A i  ,"., Cl ~ 7 1  .,,, w r h  " that ...-. "" 0 
is a closed Zform, 11 is a closcd I-form and R"'A7/ # 0. In particular, we can observe 
that R m  A Q defines a volumc form on 121, and that R is necessarily of maximal rank 
2m. Because of this there exists a unique vcctor field I' on M such that i,R = 0 and 
i , ~  = 1, called the Reeb field of the cosymplcctic structure. It is possible to relax 
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the maximal rank condition of a cosymplectic structure and we obtain the notion of a 
precosymplectic structure o n  M as a triple ( M ,  R, a )  such that R is a closed 2-form. 
q is a closed I-form on M and R' A rJ # 0, Rr+ '  = 0. Therefore R has constant 
rank 2 T  ( r  < m). It is clear that the distribution ker R n ker 7 is involutive. 

If R, is of maximal rank 2 m ,  then we will say that L is a regular Lagrangian and 
then, (R,,dl)  defines a cosymplectic structure on T Q  x R. Therefore there exists a 
unique vector field r on TQ x R such that 

L A Ibort and J Murin-Soluno 

i,n, = 0 i , d l =  1 .  (6) 

The  vector field r is called the Euler-Lagrange vector field of L and it can be shown 
that it is a SODE; its integral CUIVCS are the Solutions of Euler-Lagrange equations 

In the following sections we are going to discuss the  situation when 0, is not 
of maximal rank  In such cases thcrc will be problems both with the uniqueness 
and globality of the solutions. In order to restrict as much as possible some of 
the technical ditficulties involved in dealing with the global existence of vector fields 
satisfying (6) we will adopt several restrictions that we will describe immediately. 

3. A classification of Lagrangians 

In this section we are going to extend to the time-dependent case the classification 
of Lagrangians introduced in [4]. We will get a similar scheme; the dimensions of 
the kernel of the precosymplectic structure and its vertical part cannot take arbitrary 
values. As in the autonomous case, in order to avoid the dilficulties involved in 
considering quotient spaces in the process of reduction we will first assume that the 
pair (R, ,d t )  define a precosymplectic structure on TQ x I. In that case we know 
that the distribution I< given by kcr  0, n ker d l  is involutive. This distribution will 
be called the gauge disrriburion of the degenerate Lagrangian L .  Secondly we will 
also require that the foliation defined by thc gauge distribution li is a fibration. This 
implies that the quotient space TQ x R / K  admits a manifold structure, and the 
projection T :  TQ x R! i TQ x I/ 1; becomes a surjective submersion. Finally, it is 
possible to show that if (R , ,d l )  is precosymplectic, L admits global dynamics (see 
for instance [2]), i.e. there exists at least one  vector licld S satisfying equations (6). 

Summarizing, we adopt the following basic technicdl assumptions on the function 
L that can be considered in what follows as the definition of a Lagrangian [unction: 

(AI)  ( 0 , , d t )  is precosymplectic; 
(A2) The foliation defined by K is a libration. 

Remarks. 
(i) There are no fundamental reasons (apart from technical reasons) for the 

assumptions (AI), (A2). It  is easy to construct functions I, such that R L  does not 
satisfy (AI), (A2). On the other hand almost a11 relevant physical examples satisfy 

(ii) The  existence of global dynamics implies that there are no secondary or higher- 
order constraints for the Lagrangian L. Obviously there a re  many important situations 

A few remarks on conditions (AI), (A2) are in order here. 

(-42). 
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where we face higher-order constraints. UnSortunately the geometrical structure of 
the constraint algorithm is completely different to the geometric structures described 
so far to reduce degenerate Lagrangians. To make both processes compatible requires 
further refinemem of the theory. 

(iii) It is immediate that if I, admits global dynamics, then the general solution 
of the dynamical equations will have the form i. = r + X ,  where r is a partic_ular 
solution and X is a vector field in fi. However, in general there is no solution r of 
the dynamical equations (6) which is a SODE. We will show later that for some special 
Lagrangians (type 11) there is always a i. which is a SODE. 

Now, we a re  going to give a classification of Lagrangian systems. The first impor- 
tant result relates and 52,. 

Leninta 2. If L : TQ x R - R is a Lagrangian function, then 

i$, = 0. (7) 

hoof. 
t , q i , Q i ,  that does not vanish trivially is 

Simple computations show that the only term of i,R,, in local coordinates 

The computation of R, shows that the coefficient of d t  A d i i  is 4j(a2L/a$a$). 
O n  the other hand, the coelficient O S  d$  A dq' k ?32L/aijat~;. Collecting these 
results and taking into account ijQ,,(.Y,Y') = Q , ( i ( X ) , Y )  + R , ( S , S ( Y ) )  we 
get the desired result. 0 

It is important to notice that i,Q, # 0 and ijQ, # 0. From equation (7) and 
lemma 1 we easily get 

S ( k e r R , )  c kerR, n V(7'Q x R)  (8) 

and from the definitions of the respective tensors we get 

- 
s Ikerdl= s Ikcrdr= S lirCVdl ' (9) 

Then it is clear that 

Lemnta 3. Let I, be a Lagrangian function and A' its gauge distribution. Then 

~ ( ~ i ) = S ( ~ i j = ~ ( f i ) ~ i i .  (10) 

hooJ Because of (9) the tensors S, and S agree when restricted to kerd l ,  
so they wiii agree on ii = k e r d i  ii k c r i i , .  But S(i<j c S ( k e r R , j  which is 
contained in ker Q L  n \'( TQ x R )  by (X), thcn the result follows from the inclusion 

0 ker C l ,  n V(7'Q x R )  c li. 

It is an immediate consequence OS this that 
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Lemma 4. 

L A  Iborr and J Monk-Solono 

In the conditions above 

ker( 3 I K )  = li f l  V( TQ x R) . (11) 

Proof. From lemma 3 we get .'?( /i) c /i and from (9) we conclude that S I K =  
0 .'? JK. Then because of lemma 1 we get the result. 

Finally, we can conclude this argument with the following theorem. 

Theorem 1. If L is a Lagrangian function and we denote by V(  li) the vertical part 
of its gauge distribution li, V (  1;) = /i n V ( T Q  x E!), then 

dim V(  li) < dim Ii < 2 d i m  V( I<) . (12) 

Proof. Because of (8) and (10) it is clear that .$(IC) c I< r l  V( T Q  x R) = V( IC) .  
But because of lemma 4 we have V( li) = kcr(  I,<). Then dim /i = dim s( K) + 
dim k e r ( 3  I x )  = dim .'?( li') + dim V ( l i )  < 2dim V ( K )  j dim V ( l i )  > 

dim I(. 
,,-:-- .L:" ^^^ - , - - -A . .  A:-.: :-L .L_^^ ^.^^" ^I _I ~ ^_^_^  !--- ~... ^ _ _ I  "sllrg L I U >  pupcl ly  wc La,, allcauy "ar!rlg"r>!r L I I I L X  Lyp";> U, ugrar,gra,l> cxLc,,u- 

(i) p p e  I: if dim li = dinr V( I < )  = 0; 
(ii) v p e  11: if dim li = 2 dim V( li) # 0; 
(iii) p p e  111: if dim /i < 2dim V( li). 
p p e  I Lagrangians are just regular Lagrangians. p p e  I1 Lagrangians have very 

interesting properties from the point of vicw of reduction and a class of them (see 
section 4.1) have been already studied by de Lecin el ol [2]. 

Remarks. 
(i) If we are discussing time-indepcndcnt Lagrangians, it is easy to show that 

IC = kerwL,  where w L  is the Cartan 2-form of the autonomous Lagrangian L .  
Then this classification reduces to the classification givcn in !4]. 

ing the classification in [4]: 

(ii) It is easy to show that 

V(ke rRL)  = ker C I L  n I n 1  S = li n In1 S = V( I<). 

Then because of (12), we get 

dim li' < 2 din1 V(ker  a,) 

and taking into account dim ker  CIL < d i m  /I' + 1, we have that 

d i m k e r R L  < 2 d i n i V ( k e r R , , ) + l  

".. inerefore, another equivaient characterization iur the iiiRereni iypes of Tiagran@m 
above is: 

(i) p p e  I (regular Lagrangians): d i n i  k e r n L  = 1 and dim V(kerRL)  = 0; 
(ii) p p e  11: if dim k e r n L  = 2dit11 V ( k e r R L )  + 1 # 1; 
(iii) p p e  HI: if dini  kerR,, < 2diiii V( l<erRL)  + 1. 
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4. Reduction of non-autonomous Lagrangian systems 

Let L be a Lagrangian on TQ x R. The program of reduction we are going to develop 
consists of studying the structure of the quotient space TQ x R / K .  We identify K 
with the gauge degrees of freedom of the system associated to the Lagrangian func- 
tion, and consequently they should be removed. Supporting this physical argument, 
notice that if (R, ,dt)  define a precosymplectic structure on TQ x R, then it is well 
known that the quotient space TQ x R / K  inherits a cosymplectic structure (R ,q ) ,  
hence a dynamical vector field, its Reeb field. Both, R, and d t ,  are projectable along 
li because clearly R, satisfies C,R, = 0, i z Q L  = 0 for all Z E li and i,dt = 0 
(and then L 2 d t  = 0) for all Z E 1;. Also, each vector field X such that i,R, = 0, 
i , d l  = 1 projects onto TQ x iR//<. Namely 

i[,,zlCIL = C,i,R, - i z ( C x C I L )  = VZ E ker R, 

implies that [ X , Z ]  E kern , ,  VZ E k e r n , .  Moreover, [X,Z]  E k e r d l ,  V Z  E 
kerdl,  since dl([X, 4) = 0. Therefore, [S, Z ]  E IC, VZ E lip. Then the Reeb 
vector field r on T Q  x R / l <  will satisfy the dynamical equations 

i,n = 0 i,q = 1 (13) 

and rr'n = R,, rr*q = d t  by construction. The notion of a Lagrangian system 
presupposes, however, the existence of an integrahle, almost s-tangent structure on 
TQ x R / K ,  or the analogue of the  geometrical objects 5 and A. Therefore, if we 
want to obtain as a final product of the reduction procedure a regular Lagrangian 
system, we must find under which circumstances the adequate tensor fields pass to 
the quotient, and endow it with the corresponding structures, i.e. it is necessary to 
prove, for instance, that the triple ( S , d t , a / d t )  is projectable to T Q  x R/IC and 
that its projection dcfines an integrable almost s-tangent structure on TQ x R/l<. 

The conditions of projectability under an integrable distribution for forms and 
vector fields are well known and have been used above. The projectability condition 
for (1, 1) tensor fields can be stated as follows. Let D be an integrable distribution on 
a manifold M such that the foliation defined by D is a fbration and let M / D  be the 
leaf space. A tensor field R of type (1,l) on M projects onto M I D  if R ( D )  c D 
and Im(C2R)  c D, VZ E D (sec 141 for a proof). Then 

Lenima 5. Let L be a degenerate Lagrangian on TQ x R. Then 
(ij 3 p;GjecG oiito T Q  RI!,. if ;i;l(Czs) p;, y z  E :;, 
(ii) a/at  projects onto TQ x W / l i  if [ B / a t , Z ]  E Ii, VZ E /<. 
(iii) If and a/at  are projectable, then S is projectable. 

Prmfi 

3 - (a//& 0 <!!). Then beca.se 3, i J / i J !  and d ?  are 
projectable, S is projectable. . U  

Proposilion I ,  

(i) From lemma 3 we have S(  I<)  c /<. 
(ii) w, pIE .&:e 

If there exists a SODE r such that i,.R, = 0, i,dt = 1 and S is projectable, then 
the Liouville vector licld A on TQ x R and arc both projectable. 
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Proof. 

L A Ibon and J Monk-Solano 

(i) Let Z be an arbitrary vector field in li. Then using S( r )  = A we have 

[z,ai = ( w ) r  + s[z ,  ri . 
We know that [Z , r ]  E IC and S(1i) E I<, then S l Z , r ]  E IC. Also, because S is 
projectable, Im(LC,S)  E I< G- (LzS)r E li. Then [Z,A]  E IC, VZ E IC + A is 
projectable. 

(ii) 3 = S - A c3 dt. Since S, A and d t arc projectable, then 3 is projectable.0 

4.1. Type II Lagrangians 

Even if a degenerate Lagrangian L is such that the projectability conditions (i), (ii) 
in lemma 5 are satisfied, the quotient structure ( F ,  T ,  T ) ,  where F and T are the 
proiections of 3 and a /& respectively, is not necessarily an integrable almost s- 
iangent structure on TQ x W/k. It &uld happen that ;he rank of the projected 
tensor E is wrong. The following proposition shows that type 11 Lagrangians are the 
only ones that could give almost s-tangent structures on the quotient space. 

Proposifion 2. Let L be a degenerate Lagrangian such that the tensors S and a / a t  
are projectable under It.. Then the projected tensors define an integrable almost 
s-tangent structure if L is of type 11. 

PrmJ Let us assume first that the tensors S and a/al are projectable. By def- 
inition of E, for any m E TQ x R / I <  and t E T,,,(TQ x W / l i ) ,  we have 
P,,,(i) = *,(S,(()) for any E K ' { n t )  and any ( E Ty(TQ)  such that 
n,(.$) = i. Therefore, dim F,,(T,,(TQ x W / l i ) )  = diin I I * ( S ~ ( T ~ ( T Q  x R))). 
From lemma 1 we know that Im 3 = V(TQ x W )  @ TR. Then, it is easy to see that 
dim r*(Sy(Ty(TQ x R)))  = dim S,(T,,(TQ x R ) )  - dim ker(?r),(gy(Ty(TQ x 
R)))  = dim Vy( TQ x R)))  + 1 - dim V,( li) = f diin TQ - d i m  V (  li) + 1. But 
because ( E ,  T ,  T )  defines an integrable s-tangent structure on TQ x R/l i7 ,  rank E = 
dim P,,,(T,,,(TQ x W / I i ) )  = ;(dim TQ - dim I C )  + 1. Then dim V ( K )  = 

Conversely, if L is of type 11, dim V( I<) = f dim li, then, with the argument 
used before, rankF = dim pnb(T,,L(TQ x R / l i ) )  = f d i m  TQ - dim V ( l i )  + 1. 
This implies immediately r a n k p  = f d i i n ( T Q  x R / l i ) +  1. The other conditions in 
the definition of an almost s-tangent structure are immediately verified: p2 = T @  T ,  

0 

Even if the integrable almost s-tangent structure on TQ x R is projectable, this 
does not imply that the Lagrangian function itself will project to the reduced space. 
There will exist a local Lagrangian function iu : U c TQ x E//< - R defining 
locally the Lagrangian Structure of the SODE HamiJtonian cosymplectic system r on 
the quotient (13), but L and L, (where L ,  = L, o T )  will he gauge-equivalent; 
rhara .,,;I1 P ~ C I  9 r l ~ ~ ~ r l  1 ffirm -. ' x - l ( ~ ~ ) ) C ~ ) : ~ S n C h t h , a ! ~ =  r - ~ l i r ~  vi -U I -U 
up to a constant. This family of I-forms n,-dclines an obstruction to the existence 
of a globally defined projectable Lagrangian L on TQ x R/lC which has as dynamics 
the projected equations of motion (13). 

The following proposition gives sevcral characterizations of type II Lagrangian 
systems. 

dim IC, and L is a type II Lagrangian. 

i,r = 1, N F  = 0 and T is closed. 

L11C.C n,,, CA,.,, Y .I"LIIY I - L " I I I I  u(,t " I ,  I 
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Proposition 3. The Lagrangian L is of type 11 if S( /i) = S( I C )  = S( li) = V (  Ji). 

Proof. Because of lemma 3 we have that S( / i )  c V ( l i ) .  On the other hand 
because of (10) and lemma 4, we havc that diiii S( /<) = dim li - dim V (  I<). For 
type I1 Lagrangian functions dim V (  /i) = f d i m  li. Then dim S ( l < )  = d i m  V ( K )  
and the result follows. 0 

Cordby 1. If L is a type I1 Lagrangian function, then V(kerR,) c S(ke r0 , )  
and d i m S ( k e r S l , ) - d i m ( k e r R , n L m S )  < 1. 

Proofi ker Sl, f l Im  S = IC n I m  S = S( li) c S(kerR,). Now, we observe that 
0 

One of the main properties of type II  Lagrangians is given by the following 

dim S(ker a,) < dim S( /i) + 1. 

proposition. 

Proposition 4. If L is a type 11 Lagrangian function, then there exists a projectable 
SODE r such that iraL = 0, i,dl = 1. 

Proof. We h o w  that there exists a vcctor lield ,Y such that i,R, = 0, i,dt = 1. 
Now, we want to construct a vector field r satisfying S(r) = A and the eguations 
of motion i,R, = 0, i rd l  = 1. From (7) we get that S(S)Q,  = 0, but S ( S )  = 
S(X)-A becausc i,dt = 1. Thcn S ( - Y ) - A  E fi and also S ( S ) - A  E Im S, hut 
because L is a type I1 Lagrangian function, S( / i ~ )  = V (  li), and then there exists a 
vector field Y E Ii such that SO’) = S ( S )  - A. If we sct r = X - lr, then we 
have S ( T )  = A, i,dt = 1 and i,R, = n. Finally, because r satisfies the equations 

0 

If I, is a typc I1 Lagrangian and S is projectable, then the Liouville 

of motion, we have already provcd that r is projcctablc onto TQ x R / / i .  

Corolhry 2. 
vector field A on TQ x W and arc also projcctablc. 

Proof. Tine prooi foiiows irom propositions i and 2. 0 

Eraniple. We are going to apply the rcsults obtained before to the special class of La- 
grangians discussed in [Z]. Thcrc, de Leon a a/ studied degenerate non-autonomous 
Lagrangians satisfying the conditions 

It is clear from the condition (14) that s( /i) = li n V ( T Q  x R), i.e. S( li) = 
V (  li). In fact, we let S be a vcctor on V (  /<). This means that S is in ker R, n 
ker d l  n V (  TQ x LR c ker R, n 1 1 1 1  3, and hence there exists U E ker 0, such that 
S ( U )  = ,Y. If U does not belong ti) l x : v d f ,  this implics that d i ( U )  # 0, then 
d l ( S ( U )  # 0, which is a contradiction. Thcrcforc, condition (14) implies that these 
Lagrangians are particular examples of type I I  Lagrangians. Besides, the assumption 
S(ker  n,) = k e r  a, n I m  S is stronger t h a n  S( /i) = v( K). For instance if r is 
a vector field in kernL such that i,dt + 0, it is possible that i q r 1 R L  # 0. 
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Condition (15) also implies by itself that the Lagrangian function is of type 11. This 
can be seen by an argument similar to the argument used previously for condition 
(14). In addition, because proposition 4 assures that there exists a SODE r such 
that i,R, = 0, i,dl = 1, and as a consequence of proposition 3 we have that 
condition (U) implies that S(ker a,) = ker R,nIm S = S(Ii) c li. In particular, 
S( r) E IC, but S(  r )  = A + A E Ii. This means that the Liouville vector field will 
be projectable with projection equal to zero. 

4.2. Reduciion OJ a class of iype I l l  Lagrangians 

In this section we would like to study some aspects of the reduction of type I11 non- 
autonomous Lagrangian systems, dim li < 2d im V (  I<). Because of the inequality 
dim V ( K )  4 dim Ii < 2dim V ( K ) ,  the most degenerate case would happen if 
the Lagrangian is such that dim li = dim V( li), that is, ker '2, consists only of a 
vector field solution of the dynamical equations and vertical vector fields. Lagrangians 
satisfying this condition will be called coniplclely degenerate Lagrangians and have been 
already studied in the autonomous case [7] to solve the inverse problem of mechanics 
for certain coupled differential equations. 

4.2.1. 
dim V ( I i )  = dim li. Then necessarily li = V ( K )  and li is an integrable dis- 
tribution consisting only of vertical fields. 

A model for completely degeneraie Lagrangians. We will now discuss the main model 
of type 111 Lagrangians satisfying dim V ( K )  = dim Ii. The configuration space is 
going to be the artesian product M x N x R, with xi the local coordinates on M 
and 2" the local coordinates on N. Consider t h e  Lagrangian function 

co!??,!e!e&J I e g C E e m  LL'pn&+L'nr. Le! L be a hgrangjan such that 

L = L o ( x , k ; z , t ) +  A,(z,?;i,t)ta. (16) 

The Cartan 1-form is 

and the Cartan 2-form, 

+(-+-- @A0 - 3) d z o  A dx'  
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(18) 

The matrix associated with R, in the basis of I-forms (dx ' , dk ' ; dz" ,d i " ;d l )  is 

/ M  W R - T H \  

where 

a A p  a A m  
az- a z p  
a A ,  2, = $'- ai:  

Fmp=--- 

We must obselve that the logical process is to reduce the total space T(  M x N ) x R  
by the  vertical vector fields in 7" to obtain the reduced space T M  x N x R. Then 
it is necessaly that the terms in Cl, with thc form d i m  A (. . .) will vanish. We can 
reduce SE, if and only if the submatrices 7 and Z are zero. However, it is clear 
from (23) and (25) that T = 0 implies Z = 0. Therefore, we only need to impose 
that a A , / a i i  = 0. If we project R L  onto T M  x N x R we  obtain the 2-form fi, 
*i!h assc&a:ed z2!rk 

i M W R If\ 



3364 

that we will assume of maximal rank. Notice that this implies that the dimension of 
N is even. It is clear that under these circumstances the gauge distribution Ii of the 
Lagrangian 

L A horr and J Manit-Soluno 

L = L,,(z,i; z,i) + A , ( z ;  2 , t ) P  

is K = V ( T N ) .  The equations of motion are the solutions of the dynamical 
equations 

i rOL = o i,dl = 1 (30) 

and if the vector field r is written in local coordinates as 

the generalized forces f' and ga are given by the expressions 

f = w -  l R F - l ( N  - Rij.) - MI-IMj. - W-lH 

g = F'( R'? - V )  . 

Projectabiliry of fhe geometric strucrures. Let Z = B'a/aq' be a vector field in Ii = 
V ( K ) .  The tensor field s projects onto TQ x R / I i  if and only if I m ( L z S )  c IC 
for any Z E li (see lemma 5). In local coordinates, 

Then it is clear that Im L,s is spanned by vertical vector fields with coefficients 
a B i / a t  and a E J / a q i .  On the other hand, a/a l  projects onto TQ x R / I i  if and 
only if [a /a t ,  Z] E li, VZ E I<. This means that 

Therefore, we have the following result. 

Proposifion 5. Let L be a completely degenerate Lagrangian. Then 
(i) s projecuj onto TQ x R / l i  if 

(aB i /a t ) (a2Laq ia , j J )  = ( a B J / a q i ) ( a 2 L a q J a $ )  = o 

for all Z = B'a/aq' E li. 

before. 

Corollary 3. 

Proof. 

(ii) a /a t  projects onto TQ x R / l i  if ( a B 8 / a i ) ( a 2 L / a $ a + J )  = 0 for Z as 

If s is projectable onto 7 ' Q  x R / / i  then S is projectable. 

From proposition 5 we get that il S is projectable then a / &  is projectable, 
0 and because d t  is always projectable, we get that S is projectable. 
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We would like to know something about the projectability of .? and A. First of 
all, it is clear that if S and A are projectable, then .? is projectable. On the other 
hand A is projectable if and only if [ A ,  Z ]  E IC, for any Z E /<. But locally, 

From proposition 5 we finally obtain 

CoroNary 4. 
is projectable. 

If S is projectable onto TQ x a//< then the Liouville vector field A 

Therefore, what we have shown is that the projectability of implies the pro- 
jectability of all the other structures. In particular, S is always projectable if the 
distribution /i- is time-independent and constant along the fibres of TQ x R, i.e. if 
the distribution IC can be generated locally by a family of vector fields Z!,  . . . 2, 
such that if 2, = Bja/aq', then as j la t  = asj/aq' = 0. Then, the conditions 
of proposition 5 are automatically satisfied. It is easy to show that the previous con- 
ditions are equivalent to the existence of distribution F on Q such that /< = F", 
where FV denotes the vertical lifting of F ,  i.e. if A' = X'a /aq '  is a vector field in 
F ,  then Xv = Xia/aq'. 

"wm 2. Let L be a completely degenerate Lagrangian such that /< is the vertical 
lifting of an integrable distribution F on Q, then the  tensors 3, 3,  S, A, a /a t  all 
project to TQ x R / / i  which locally has the form T M  x N x R. 

hoof. It is clear that all the tensors and vector fields project because of proposi- 
tions 5 and corollaries 3 and 4. The local structure of the quotient space can be 
obtained from the following considerations. The vertical bundle V (  TQ x R) can 
be identified with the Whitney sum of two copics of the vector bundle J ' ( R , Q )  
over Q x R. In general, if E - M is a vector bundle over M ,  the vertical vector 
bundie V ( E j  is isomorphic to E @  E,  the identification provided by the bundie map 
((,C) E E el? E - d /d t ( [  + t C )  7( E.  In this scnse thc distribution Ii, being 
the vertical lifting of F ,  can be identified with a sub-bundle F of TQ x R - Q x R. 
The quotient manifold Q / F  will be denoted by hl; then it is easy to show that the 
total quotient manifold TQ x R / I i  is locally diffeomorphic to 7'124 x N x R where 
N is a leaf of the integrable distribution F.  Lct ?n be a point in 124, i.e. a leaf of 
the integrable distribution F in Q. We will denote this leaf by N ;  then, because of 
the fibration property of IC,  hence of F, thcrc cxists an open neighbourhood U of 
m such that T - ' (  U )  Ez U x N x R. Locally, Q x Iw can be factorizcd as M x N x R 
and the distribution Ii is preciscly the tangent bundlc of N in this factorization. 0 

4.2.2, dim V (  li) < d i m  /<. For general type 111 Lagrangians is impossible to go 
ocyuiiu me gciiciic. IC:SUIL oii piijjcci&iiiYj 3;' i k  i i a ~ ~ i a l  ieiisoij iii TQ x R iiniejs 
we make some specific assumptions on thc structure of IC. In particular there is an 
important family of vpe 111 Lagrangians extending the particular case of Lagrangians 
such that li is a tangent algebra considcred in [4] and the Lagrangians such that /i- 
is an s-tangent distribution considered in 121. 

I I _L . -.- ._ - I. 
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Definition 1. A distribution D on T Q  x R will be said to be almost tangent if there 
exist two integrable distributions E c F on Q x R locally generated by families of 
vector fields XI, . . . , X, and Y,,  . . . , Y, respectively, such that D is locally generated 
by the family of vector fields X ! ' ) ,  . . . , X t ) ;  Yy , . . . , Y,", where X ( ' )  denotes the 
first extension of the vector field A' and Yv denotes the vertical lifting of Y .  

We will denote the almost tangent distribution D as E(') 0 F". It is clear 
that if E = F,  the distribiution D is an s-tangent distribiution as in [Zj and if E is 
time-independent, D is simply T E  with the notation in [4]. It is also evident from 
the definition that if a degenerate Lagrangian has gauge distribution I; of almost 
tangent type E(')  0 F", then the Lagrangian L is a projectable of type I11 with 
dim V( K) = dim F < dim F + diin E = dim li. 

Corollaty 5. Let L be a type 111 Lagrangian function such that li = E(1)  0 F" is 
almost tangent and time-independent, then the tensors 3, 3, S, A, a/at  all project 
to TQ x R/h'  which has locally the form T M  x N x R, where M is transverse to 
a leaf of F and N is the quotient of a leaf of F by E .  

PrmJ Applying theorem 2, the quotient space corresponding to the gauge distribu- 
tion li' = F" is T M  x P x R, where P is a leaf of F and A4 is transverse to the 
foiiaiion F. "aut the gauge distribution stiii contains E; then E defines a foiiation of 

0 

Linear Lagrangians on Lie groups. The most significant example of this situation 
happens when we consider linear Lagrangians in groups defined by left-invariant 1- 
forms. Let G be a Lie group with Lie algebra g. We will identify the dual g' of 
the Lie algebra g with the space of left-invariant 1-forms on G. In other words if 
p E T;G then there exists a unique left-invariant 1-form a,, such that a , ( e )  = j ~ ,  

defined by a , , (g )  = L ip .  Then we can consider the Lagrangian function on T G x  W 

with V a G-invariant function on G x l?:. It is easy to check that the Cartan 1-form 
e,,," of L,," is given by 

F ,  hence the quotient space has the  form 7'M x N x R where N = P / E .  

L , , , " (g>b> i )  = (a,(s),b) - v(g>i) (34) 

e,,,, = r;a,, - I'dl (35) 

Q,," = r E d a , - d V A d l .  (36) 

and the Cartan 2-form Q,," = de, , , ,  is given by 

Proposition 6. In the conditions above the gauge distribution I\. of L,,,L, is g, 0 g,  
the quotient space TG x R/l;  is isomorphic to U,, x R where U,, denotes the co- 
ajoint orbit of G passing through G, and the reduced dynamics is the cosymplectic 
Hamiltonian system defined by the projectcd iunction V. 

Proof. From equation (36), we easily get that V(TG x R) = g is contained in 
kerR,,,v, and this is just the vertical part. Using the left decomposition of T G  = 
G x g,  the horizontal vector Z fields on li, satisfying i z d a , ,  = 0. It sulfices to 
consider ieit-invariant vector k i d s .  Tten, the previous condition is equivaient to the 
equation in the tangent spacc at the identity clement 

~([z(e),Fl) = 0 V€ E (37) 
in other words, Z E li if Z (  e )  E g,,, the isotropy algebra of p.  0 
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Remarks. (i) ?his theorem is the Lagrangian counterpart of the Kostant-Kirillov- 
Souriau theorem and gives an  alternative description of coadjoint orbits in terms of 
tangent bundle geometry. 

(ii) If G, = G, or  equivalently if p is a 1-cocycle in Chevalley cohomology, 
then L, is a zero-gauge equivalent Lagrangian because do,, = 0. That means that 
a,, = 0 and TG x RIIC = Iw. 

(iii) A particular case of this result has been used recently to discuss the quantiza- 
tion and structure of gauge tnearies in coadjoint orbits (see for instance iij and i9jj. 
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