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Abstract. A geometric classification of degencrate time-dependent Lagrangian systems is
given and the reduction of evolution space is analysed. General properties of semiregular
Lagrangians (type [I) are discussed and particular attention is paid to the reduction of
complelely degenerate Lagrangians (type II1) which are considered in detail.

1. Introduction

Degenerate Lagrangians are ubiquitous in physics and extensive literature has been
devoted to discussing them from several points of view and for several purposes. The
study of the reduction of evolution space of an autonomous degenerate Lagrangian
was initiated in a previous paper [4]. The reduction process involves quotienting out
the gauge degrees of freedom associated with the kernel of the Cartan 2-form defined
by the Lagrangian function, and with studying the existence, or non-existence, of a
non-degenerate Lagrangian system on the quotient space. Apart from some technical
restrictions on the family of degenerate Lagrangians suitable for such study (the
most restrictive from the physical point of view is the non-allowance of secondary
constraints) it was proved that only a special class of these (called type II) are good
candidates for the purposes of reduction. One of the most intercsting by-products
of this program was to make explicit thc existence of non-trivial constraints on the
dimension of the gauge algebra (the Lie algebra of vectors lying in the kernel of the
Cartan form). It happens that type Il Lagrangians are the most similar to regular
Lagrangians; for instance they are the non-regular Lagrangians having the highest-
rank Cartan form and they always posscss a second-order differential equation (SODE).

The program started in [4] was unfinished, not only because generic degenerate
Lagrangians (those of type III) were not considered, but because the discussion was
concentrated in the autonomous casc. Recently, new ideas have been intreduced
in the discussion of time-dependent degencrate Lagrangians [2] showing that new
aspects arise in this context that extend in a non-trivial way the results in [4].

In this paper we will revisit the program of reduction of degenerate Lagrangians
considering from the beginning the non-autonomous case, and concentrating our
attention on the generic case, i.c. not only in the semircgular situation. First of
afl we will describe the classification of non-autonomous Lagrangians extending the
classification in [4]. We will investigate in gencral the process of reduction of evolution
space as a second step and, aftcrwards, we will study in more detail the reduction
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of type II Lagrangians and special types of type III Lagrangians, the completely
degenerate and those having a gauge distribution of almost tangent type.

The organization of the paper is as follows. Sections 2 and 3 are devoted to
reviewing general notions on the geometry of evolution space and to establishing the
classification of degenerate non-autonomous Lagrangians systems. In section 4 we
describe the general reduction program for degenerate non-autonomous Lagrangian
systems and in particular we will discuss type I and several families of type III

Tagranaiano im cuhoaatimnme A1 and 49
Msldllgldllb 1H SULRBLLLIVIL 1 dlIU L.

2. Geometric structures on evolution space

2.1. Some natural tensor fields on J! (R, Q)

Let @ be a manifold of dimension rn, the configuration space of a dynamical system
with local coordinates ¢, and 7°Q the tangent bundle of Q with natural coordinates
¢',¢'. The evolution space for time-dependent mechanical systems is the first jet
bundle of smooth maps from R to Q, denoted by J'(R, Q) and, as is well known,
there exists a canonical isomorphism between J'(R, Q) and TQ x R. Local coor-
dinates in evolution space are simply ¢,q", ¢°. Therefore in what follows, when we
want to refer to the evolution space, we will write 77 x R.

Let 7o : TQ xR — Q x R be the projection induced by the canonical projection
70: TQ — Q and the identity on R. Then J!(R, Q) becomes in this way a vector
bundle over @ x R with projection map 7, and fibres the tangent spaces T, Q. We
define the vertical bundle V(T'Q x R) as the sub-bundle ker ¥, of T(TQ x R), ie.
the set of vectors V € T(T'Q x R) such that 75, (V) = 0. Locally, a vertical vector
field has the form V = Vi(q,§,1)8/84".

There are several geometrical structures on the evolution space, some arising
naturally in 7€} x R and some associated with a given function L. Most of them
are related to the canonical, integrable, almost tangent structure on T'Q, the vertical
endomorphism &, a rank-m (1,1) tensor ficld on T'Q such that ker 5 = Im 5 and
whose Nijenhuis tensor N vanishes. In natural coordinates, the local expression for
S is given by

s=-2 gdq. (1)
}

The other main geometrical ingredient of 7°Q is the Liouville vector field A
which is the infinitesimal generator of the dilations along the fibres on T'Q and
is locally expressed by A = ¢'8/8¢'. In a precise sense S and A are the main
geometrical structures on T'( because under certain conditions they characterize the
tangent bundle TQ (see [6] and [8]).

On the other hand, in 7'Q x R there exists, apart from the Liouville vector field
A, a canonical tensor field of type (1,1) given by (see [5] for more details on the
geometry of JY(R, Q))

S=S5-A®di. (2)
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We can observe that rank S = m, 52 = 0 but it is not integrable, Nz =
~S @dt # 0. Locally, using the family of local-contact 1-forms ¢ = dq' — ¢'d¢, we
can write S = 8/8¢' ® 6.

Alternatively, we can introduce a different sort of structure, an almost s-tangent
structure [10]. Let us recall that an almost s-tangent structure on a (2m + 1)-
dimensional manifold M is a triple (S, r,~), where S is a tensor field of type (1, 1),
7 is a 1-form and ~ a vector field on M such that (i) i, 7 = 1, (i) S =y ® 7, and
(i) rank S = m + 1. An almost s-tangent structure is called integrable if Ng = 0
and T is closed. It is obvious that the triple (S, dt,8/8t) with

b

S=S+3t

®dt 3
defines an almost s-tangent structure on 7Q x R. It is possible to show that an
integrable almost s-tangent structure characterizes TQ x R [3).

There are several invariant definitions of sccond-order differential equations in
evolution space. A vector field I" in the evolution space TQ x R is called a second-
order differential equation (SODE for short), if S(T") = A and idt = 1. Clearly the
local expression for a SODE is

d 4 0 i 9
U=gitd55+ 0 55 “4)
and it is clear that T is a SODE if S(I"} = 0 and S(I') = A.
We will collect all the information on the structure of the kernel and the image
of the different (1, 1) tensor fields 5,5 and S defined so far in the following lemma.

Lemma 1. With the definitions above, we have
(i kerS=V(TQ xR)s TR
(ii) Im § = V(TQ x &)
(iii} ker S = V(TQ x R)
(V) ImS=V(TQ xR)a TR
N Tm &= VITO « B
\V}ll:la.)—l’\.l%/\u\\}

(vi) S is zero over vertical vector fickls and SODEs.

2.2. Lagrangian systems

Let L:7TQ x B — R be a smooth function. The Cartan 1-form associated with L is
given by

©, = Ldt+dLo S (5)

and the Cartan 2-form associated with L is the exterior derivative of ©,, Q; = d©,.
The 2-form 2, together with d¢ will sometimes define a cosymplectic structure [11]
on the evolution space 7'Q x . In fact, a cosymplectic structure (or an almost-contact
structure) on 2 {2m + 1)-dimensional manifold M is a tiple (M, 0, n), such that O
is a closed 2-form, # is a closed 1-form and ' A7 # 0. In particular, we can observe
that ™ A 7 defines a volume form on M, and that 2 is necessarily of maximal rank
2m. Because of this there exists a unique vector licld I on M such that ¢pQ = 0 and

irn = 1, called the Reeb ficld of the cosymplectic structure. It is possible to relax
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the maximal rank condition of a cosymplectic structure and we obtain the notion of a
precosymplectic structure on M as a triple (M, 2, n) such that 2 is a closed 2-form,
n is a closed 1-form on M and Q7 A # 0, Q"+ = 0. Therefore 2 has constant
rank 27 (r < m). It is clear that the distribution ker Q N ker n is involutive.

If 2, is of maximal rank 2m, then we will say that L is a regular Lagrangian and
then, ({2, ,dt) defines a cosymplectic structure on T'Q x B. Therefore there exists a
unique vector field T on TQ x R such that

The vector field T is called the Euler-Lagrange vector field of L and it can be shown
that it is a SODE; its integral curves are the solutions of Euler-Lagrange equations

dfoLN oL o u_de
at\a¢ )~ aq h=

-
T m.

/AN

1
1

In the following sections we ar¢ going to discuss the situation when 2, is not
of maximal rank. In such cases there will be problems both with the uniqueness
and globality of the solutions. In order to restrict as much as possible some of
the technical difficulties involved in dealing with the global existence of vector fields
satisfying (6) we will adopt several restrictions that we will describe immediately.

3. A classification of Lagrangians

In this section we are going to cxtend to the time-dependent case the classification
of Lagrangians introduced in [4]. We will get a similar scheme; the dimensions of
the kernel of the precosymplectic structure and its vertical part cannot take arbitrary
values. As in the autonomous case, in order to avoid the difliculties involved in
considering quotient spaces in the process of reduction we will first assume that the
pair (§2,,dt) define a precosymplectic structure on TQ x IR. In that case we know
that the distribution K" given by ker Q; Nkerdt is involutive, This distribution will
be called the gauge distribution of the degenerate Lagrangian L. Secondly we will
also require that the foliation defined by the gauge distribution K is a fibration. This
implies that the quotient space TQ x BR/A admits a manifold structure, and the
projection 7: TQ x R — T'Q x ./ ' becomes a surjective submersion. Finally, it is
possible to show that if (2, ,d¢) is precosymplectic, L admits global dynamics (see
for instance [2]), i.e. there exists at least one vector field X satisfying equations (6).

Summarizing, we adopt the following basic technical assumptions on the function
L that can be considered in what follows as the definition of a Lagrangian function:

(Al) (£2,,d¢t) is precosymplectic;

(A2) The foliation defined by A is a fibration.

Remarks. A few remarks on conditions (Al), (A2) are in order herc.

(1) There are no fundamental recasons (apart from technical rcasons) for the
assumptions (Al), (A2). It is easy to construct functions [ such that £, does not
satisfy (A1), (A2). On the other hand almost all rclevant physical cxamples satisfy
(A2).

(ii) The existence of global dynamics implics that there are no secondary or higher-
order constraints for the Lagrangian L. Obviously there are many important situations
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where we face higher-order constraints. Unflortunately the geometrical structure of
the constraint algorithm is completely different to the geometric structures described
8o far to reduce degenerate Lagrangians. To make both processes compatible requires
further refinements of the theory.

(iii) It is immediate that if L admits global dynamics, then the general solution
of the dynamical equations will have the form I' = ' + X, where I is a particular
solution and X is a vector field in K. However, in general there is no solution T' of
the dynamical equations (6) which is a SODE. We will show later that for some special
Lagrangians (type I1) there is always a [" which is a SODE.

Now, we are going to give a classification of Lagrangian systems. The first impor-
tant result relates S and Q.

Lemma 2. If I :TQ x E— R is a Lagrangian function, then
isQ, =0. Q)

Proof. Simple computations show that the only term of i:Q;, in local coordinates
t,q¢', ¢*, that does not vanish trivially is

I, a0
[#]

iz0y (a, 3_q’ .
The computation of 2, shows that the cocflicient of dt Adq* is ¢/(8%L/8¢a¢*).
On the other hand, the coefficient of dg* A dg' is 82L/8¢* 84, Collecting these

results and taking into account 50, (N, Y) = QL(S(X),Y) + Q. (X, S(Y)) we
get the desired result O

It is important 10 notice that 71,2, # 0 and 7502, # 0. From equation (7) and
lemma 1 we casily get

S(ker ;) CkerQ, NV(T'Q x R) (8)

and from the definitions of the respective tensors we get

S Ikerdt= S Ikerdtz 5 |ke|'dr : (9)
Then it is clear that
Lemma 3. lLet L be a Lagrangian function and K its gauge distribution. Then

S(K)=S8(K)y=S(K)C K. (10

oY

Proof. Because of (9) the tensors §, S and S agree when restricted t0 kerdt,
so they wiil agree on A" = kerdi Nker$;. But S{K) C S(ker{2;) which is
contained in ker &, NV(TQ x R) by (&), then the result follows from the inclusion
ker, NV(TQ x k) C 4. a

It is an immediate conscquence of this that
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Lemma 4. In the conditions above
ker(S | )= KNV(TQ x k). (11)

Proof. From lemma 3 we get S(K) C K and from (9) we conclude that S |, =
S |- Then because of lemma 1 we get the result. O

Finally, we can conclude this argument with the following theorem.

Theorem 1. 1If L is a Lagrangian function and we denote by V (X') the vertical part
of its gauge distribution K, V(K)= KN V(TQ x R), then

dim V(') < dim & € 2dim V(K). (12)

Proof. Because of (8) and (10) it is clear that .§~(I() CENV(TQ xR)=V(K).
But because of lemma 4 we have V(K') = ker(S |,). Then dim K = dim S(K) +
dimker(S |g) = dim S(K) + dim V(K) € 2dim V(K) = dim V(K) 2
% dim K.

Using this property we can already distingut
ing the classification in [4]:

(i) Type L if dim K =dim V(/) =0

(i) Type IL: if dim ¥ = 2dim V() # 0,

@iii) Type III: if dim K < 2dim V(K).

Type I Lagrangians are just regular Lagrangians. Type II Lagrangians have very
interesting properties from the point of view of reduction and a class of them (see
section 4.1) have been already studied by de Leén e @l [2].

Remarks.

(i) If we are discussing time-independent Lagrangians, it is easy to show that
K = kerw;, where w; is the Cartan 2-form of the autonomous Lagrangian L.
Then this classification reduces to the classification given in [4].

(ii) It is easy to show that

VikerQ ) =kerQ, NnImS=~KnNImS=V(K).
Then because of (12), we get
dim K € 2dim V(ker,)
and taking into account dim ker ©; < dim A 4 1, we have that
dim kerQ, < 2dim V{kerQ,)+1.

T -

Therefore, another equivaient characterization for the difierent types of Lagrangians
above is;

(i) Type I (regular Lagrangians): dimker ; =1 and dim V{kerQ,;) =(;

(i) Type II: if dim ker 2, = 2dim Viker Q)+ 1# §;

(ili) Type III: if dim ker 2, < 2dim V{kerQ; )+ 1.
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4, Reduction of non-autonomous Lagrangian systems .
Let L be a Lagrangian on T'Q x R. The program of reduction we are going to develop
consists of studying the structure of the quotient space T'Q x R/ K. We identify K
with the gauge degrees of frecdom of the system associated to the Lagrangian func-
tion, and consequently they should be removed. Supporting this physical argument,
notice that if (Q2,,dt) define a precosymplectic structure on T'Q x R, then it is well
known that the quotient space T°Q x R/ I inherits a cosymplectic structure (2, 1),
hence a dynamical vector field, its Reeb field. Both, 2, and dt, are projectable along
K because clearly 1, satisfies £,02;, =0,i;,Q, =0forall Z¢ I and i,dt =0
(and then £Lzdt = 0) for all Z € L'. Also, each vector field X such that ixQ2; =0,
iy dt = 1 projects onto T'¢} x R/ A'. Namely

ix, 20 = LxizRy —ig(£x0) = VZekerfy

implies that [X,Z] € kerQ,, VZ € ker,. Moreover, [X,Z] € kerdt, VZ €
kerdt, since di([.X, Z]} = 0. Therefore, [X,Z] € K, ¥VZ € K. Then the Reeb
vector field T on TQ x R/ K will satisfy the dynamical equations

=0  im=1 (13)

and 7 = Q;, #"n = di by construction. The notion of a Lagrangian system
presupposes, however, the existence of an integrable, almost s-tangent structure on
TQ x R/K, or the analogue of the gecometrical objects § and A. Therefore, if we
want 1o obtain as a final product of the reduction procedure a regular Lagrangian
system, we must find under which circumstances the adequate tensor fields pass to
the quotient, and endow it with the corresponding structures, ie. it is necessary to
prove, for instance, that the triple (S,dt,8/8t) is projectable to T'Q x R/K and
that its projection defines an integrable almost s-tangent structure on T'Q x R/ K.

The conditions of projectability under an integrable distribution for forms and
vector fields are well known and have been used above. The projectability condition
for (1, 1) tensor fields can be stated as follows. Let D be an integrable distribution on
a manifold M such that the foliation defined by D is a fibration and let M/ D be the
leaf space. A tensor field R of type (1,1) on M projects onto M/ D if R(D) C D
and Im(L,R)C D,¥Z € D (sec [4] for a proof). Then

Lemma 5. Let L be a degenerate Lagrangian on T'Q x R. Then
Swroiectsonto TO x B/K It L. SY\C K. YZc K
Ll) «J IJIUJLLI.D VIV L W A IR Iy W LAy )l Iy, Va4 T dv .

(ii) 8/81 projects onto TQ x R/ N if [c?/dt Zle K, ¥YZ e K.
(iliy If S and &/t are projectable, then S is projectable.

Proof.
(i) From lemma 3 we have S(A )
(a/
{8}

(i) We can write § = § — 1f)., Then because S, 8/8¢ and dt ar

S e
projectable, S is projectable. . a

Proposition 1.
If there exists a SODE T such that {.Q2, = 0, irdt =1 and S is projectable, then

the Liouville vector ficld A on TQ x & and S are both projectable.
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Proof. (i) Let Z be an arbitrary vector field in . Then using S(I') = A we have
[Z,A} = (L, 8) + S[Z,T].

We know that {Z,T) € K and S(K) € K, then S{Z,T') € K. Also, because S is
projectable, Im(£;5) € K = (£L,8)[ € K. Then [Z,Ale K, VZe K = A is
projectable.

(iiy S = S — A®dt. Since S,A and dt arc projectable, then § is projectable.0]

4.1. Type I Lagrangians

Even if a degenerate Lagrangian L is such that the projectability conditions (i), (ii)
in lemma 5 are satistied, the quotient structure (F,r,T), where " and T are the
projections of S and 8/8t respectively, is not necessarily an integrable almost s-
tangent structure on TQ x R/A. Tt could happen that the rank of the projected
tensor F is wrong. The following proposition shows that type Il Lagrangians are the
only ones that could give almost s-tangent structures on the quotient space.

Proposition 2. Let L be a degenerate Lagrangian such that the tensors S and 8/9t
are projectable under f/i'. Then the projected tensors define an integrable almost
s-tangent structure if L is of type IL

Proof. Let us assume first that the tensors S and &/81t are projectable. By def-
inition of F, for any m € TQ x R/K and £ € T, (TQ x R/K), we have
F (8§ = 7, (S, (&) for any y € 7~ '{m} and any ¢ € T,(7TQ) such that
7, (&) = €. Therefore, dim F, (T, (TQ x R/K)) = dim 77*(3 (T,(TQ x R))).
From lemma 1 we know that Im § = V(7'Q x R)@ TR. Then, it is easy to see that
dim W*(S'y(Ty(TQ x R})) = dim Sy(Ty(TQ x R)) — dim ker(‘n‘)*(g'y(Ty(TQ X
R})) = dim V,(TQ x R})) + 1 — dim V(&) = 1dim TQ - dim V(K) + 1. But
because ( £, v, T) defines an integrable s-tangent structure on TQ xR/ K, rank F =
dim F_(T.(TQ x R/K)) = %(dim TQ — dim K} + 1. Then dim V(K) =
ldim K, and L is a type II Lagrangian.

Conversely, if L is of type I, dim V(L) = %dim K, then, with the argument
used before, rankF’ = dim F, (T,,(TQ x B/K)) = 1dim TQ —~ dim V(LK) + 1,
This implies immediately rank £ = § dim(TQ x R/ ') + 1. The other conditions in
the definition of an almost s-tangent structure are immediately verified: F2 =T @,
tpr =1, Np=0and 7 is closed. a

Even if the integrable almost s-tangent structure on TQ) x R is projectable, this
does not imply that the Lagrangian [unction itsclf will project to the reduced space.
There wili exist a local Lagrangian function Ly : U C TQ x R/ — R defining
locally the Lagrangian structure of the SODE Hamiltonian cosymplectic system I' on

the quotient (13), but L and L, (where L, = L, o x) will be gauge-equivalent

thara unll avier a rlncard 1.fn -~ f-rr_lf ’t’\\ C nvm’ enr‘h thnf T e f,,
eTe win &Xis1 a GOS80 =10 uU Ol To\ 7 Ly | uU

up to a constant. This family of 1-forms o, dc[mes an obstruction to the existence
of a globally defined projectable Lagrangian L on TQ xR/ which has as dynamics
the projected equations of motion (13).

The following proposition gives scveral characterizations of type 11 Lagrangian
systems.
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Proposition 3. 'The Lagrangian L is of type 11 if S(R) = S{K) = S(K) = V(K).

Proof. Because of lemma 3 we have that S(I') C V(4&'). On the other hand
because of (10) and lemma 4, we have that dim S(K) = dim K - dim V(K'). For
type I Lagrangian functions dim V (/') = 1 dim K. Then dim S(K') = dim V(K)
and the result follows. O

Coroliary 1. 1f I is a type 11 Lagrangian function, then V(kerQ,)} C S(kerl)
and dim S(ker§2, ) —dim(kerQ, Nlm §) < L

Proof. kerQ,MImS = K Nlm S = S(K) C S(kerQ,). Now, we observe that
dim S(ker§2,) € dim S(K) + L. a

One of the main properties of type Il Lagrangians is given by the following
proposition.

Proposition 4. If L is a type II Lagrangian function, then there exists a projectable
SODE T such that i, =0, ipdt = 1L

Proof. We know that there exists a vector field X such that :,Q; =0, ixdi =1L
Now, we want to construct a vector field I satisfying S(I') = A and the equations
of motion :x2; = 0, ipdt = 1. From (7) we get that S(X)Q, =0, but S(X) =
S(X)—A because i ydt = 1. Then S(.X)—A € A and also S(X)—-A € Im S, but
because L is a type II Lagrangian function, 5(A") = V(K'), and then there exists a
vector field Y € A such that S{(Y) = S(N)-A. lfweset ' = X - Y, then we
have S(I') = A, ipdt = 1 and -2, = (. Finally, because I' satisfies the equations
of motion, we have already proved that T is projectable onto T'Q x R/ K. O

Corollary 2. 1If L is a type II Lagrangian and S is projectable, then the Liouville
vector field A on 7Q x R and S arc also projectable.

Proof. The proof foliows from propositions 1 and 2. d

Example. We are going to apply the results obtained before to the special class of La-
grangians discussed in [2]. There, de Leodn e af studied degenerate non-autonomous
Lagrangians satisfying the conditions

S'(ker'QL)-——kerQLﬂlm S (14)
S(ker Q) =kerQ, Nnlm 5. (15)

It is clear from the condition (14) that S(Ah) = KnV(TQ x R), ie. S(K) =
V(). In fact, we let X' be a vector on V(1\'). This means that N is in kerQ; N
kerdtNV(TQ x R C ker 2, N1 S, and hence there exists U € ker 2, such that
S(U) = X. If U does not belong to kerdt, this implics that d¢(U} # 0, then
dt(S(U7) # 0, which is a contradiction. Thercfore, condition (14) implies that these
Lagrangians are particular examples of type Il Lagrangians. Besides, the assumption
S(kerQ, )} = ker @y NIm 5 is stronger than S(4&') = V(K'). For instance if T is
a vector field in ker 2, such that ipd? # 0, it is possible that 15, # 0.
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Condition (15) also implies by itself that the Lagrangian function is of type II. This
can be seen by an argument similar to the argument used previously for condition
(14). In addition, because proposition 4 assures that there exists a SODE T" such
that i.Q, = 0, ¢pdt = 1, and as a consequence of proposition 3 we have that
condition (15) implies that S(ker ;) = ker @, NIm S = S(K) c K. In particular,
S(TYe K, but S(I') = A = A € K. This means that the Liouville vector field will
be projectable with projection equal to zero.

4.2, Reduction of a class of type IIf Lagrangians

In this section we would like to study some aspects of the reduction of type III non-
autonomous Lagrangian systems, dim K < 2dim V( K'). Because of the inequality
dim V(K) € dim K € 2dim V(£), the most degenerate case would happen if
the Lagrangian is such that dim &' = dim V(K), that is, ker @, consists only of a
vector field solution of the dynamical equations and vertical vector fields. Lagrangians
satisfying this condition will be called completely degenerate Lagrangians and have been
already studied in the autonomous case [7] to solve the inverse problem of mechanics
for certain coupled differential equations.

4.21.  Completely degenerate Lagrangions. let [ he 2 La angian such that
dim V(K) = dim K. Then necessarily ' = V(&') and K is an integrable dis-
tribution consisting only of vertical fields.

A model for completely degenerate Lagrangians. We will now discuss the main model
of type III Lagrangians satisfying dim V(K) = dim K. The configuration space is
going to be the cartesian product M x N x R, with z! the local coordinates on M
and z* the local coordinates on . Consider the Lagrangian function

L=Ly(x,&;z,t)+ A (x,&52,1)z%. (16)

The Cartan 1-form is

—_ aL aAa i o -iaLU -i-aaAa
@L (33;1 + ajf’. ) dzx -+ Aad.. + (LO €T E;———m 4 8;};' dt¢ (17)

and the Cartan 2-form,

&L, A, N\ L : %L 8% A : :
o . 1 1 0 o ey 3 1
Q, = (83:‘8:173 + FRF TSk )da: Adz* 4 (3.&:"8333' + 3iTh.7 )dm Adz

27 824 .8 :
+( (?410 +— B b A‘,’)dza/\dw‘

dx:dze x'dzo dxt

+%Af‘dx Adz “+66A"d~°'/\da, +Fﬁdz Adz?

(BLO 8L, = 0%A L 9%L,
+ —_

0 O 20x 7
o0 T 5501 T orialc T Y Gaiaw

8% .
4 2%/ 8;1:"5;)(“ Ada!
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974 - BL A,

oz J o - J 0
+ (Z aridi T 8ozl Bl - )dt/\da:

8L, Aa g, 9PAs . 8L,

el i i ) dt Adz®
+( 5o T a1 T Fupee T ¥ e ) dtnd:

BA
+ & e dt ndi® (18)

The matrix associated with €2, in the basis of 1-forms (dz?, d&%; dz%,d2%;dt) is

M W R -T H
-Wt 0o T 0 K

Q)=|-R -T* F 0 V (19)
T 0 0 0 Z
~-H' -K' -V' -2t 0

where
2 2 2
M;; = ai-’gii - 3?,1';2,:' (aaz 23:: - aijg;iéa) 0
e Ny
Wi = saa + 5es @
2

Riv = "0+ garpes + gaiges®’ @
Far = et = 538 “
z, =20 (25)
H5=_%+§zéﬁt+3:dt +ij£%%+ii? Frd 5%2’;—;:7 (36)
K= aa;gx: £+ & a?&fggri + ?92? i e

We must observe that the logical process is to reduce the total space T{M x N)xR
by the vertical vector fields in T'/N t0 obtain the reduced space T'AM x N x R. Then
it is necessary that the terms in @, with the form dz® A (...} will vanish. We can
reduce §; if and only if the submatrices T and Z are zero. However, it is clear
from (23) and (25) that T = O implies Z = 0. Therefore, we only need to impose
that A, /8¢° = 0. If we project @, onto TM x N x R we obtain the 2-form

urth accnriatad matriv

M W R H
-Wt 0 0 K

(Q)=1| _pt FoON (29)
-H' —R' -N' 0
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that we will assume of maximal rank. Notice that this implies that the dimension of
N is even. 1t is clear that under these circumstances the gauge distribution K™ of the
Lagrangian

L= Lylz,z;2,1)+ A (z;2,1)2"

is K = V(TN). The equations of motion are the solutions of the dynamical
equations

il =0 indt =1 (30)
and if the vector field " is written in local coordinates as

a , ., 9 T B
P=Gite st 519 5

the generalized forces f* and g are given by the expressions
f=WIRFYN-R&)-W ' 'M:-WH
g=FY{R'&-V).

Projectability of the geometric structures. Let Z = B'9/8¢ be a vector field in K =
V(K). The tensor field S projects onto TQ x R/ A if and only if Im{(L;8) C K
for any Z € K (see lemma 3). In local coordinates,

= aBt o aB! 9

Ezs=——a?-a—qi® t—-ﬁa—{}j@dq. (31)

Then it is clear that Im £,5 is spanned by vertical vector fields with coefficients
dB'/8t and 8B’ /8¢*. On the other hand, 8/81 projects onto TQ x R/ K if and
only if [8/8t,Z] € K,¥Z € K. This means that

[2 21 2Bt o .
l‘ﬁ, J——a—t—-a—é—;eh. (32)

Therefore, we have the following result,

Proposition 5. Let L be a completely degenerate Lagrangian. Then
(i) S projects onto TQ xR/ N if

(8B o) 8 LG 8¢ = (8B ]8¢")(8° Lo 8¢* ) =0
for all Z = B'd/8¢' € K.

(i) 8/t projects onto TQ x B/ K if (3B /O1)(8*L/8¢'8¢) = 0 for Z as
before. .

Corollary 3. 1f S is projectable onto 7'Q x R/ then S is projectable.

Proof. From proposition 5 we get that il S is projectable then 8/81 is projectable,
and because dt is always projectable, we get that S is projectable. O
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We would like to know something about the projectability of S and A. First of
all, it is clear that if S and A are projectable, then S is projectable. On the other
hand A is projectable if and only if [A, Z] € I, for any Z € K. But locally,

OB AN
[A,Z)= (q e " BJ) 55 (33)

From proposition 5 we finally obtain

Corollary 4. 1f S is projectable onto 7'Q x R/ K then the Liouville vector field A
is projectable.

Therefore, what we have shown is that the projectability of S implies the pro-
jectability of all the other structures. In particular, S is always projectable if the
distribution K is time-independent and constant along the fibres of TQ x R, ie. if
the distribution K can be generated locally by a family of vector fields Z,,... 2,
such that if Z; = B}8/8¢', then 8B} /8t = 8B;/8¢' = 0. Then, the conditions
of proposition 5 are automatically satisfied. It is easy to show that the previous con-
ditions are equivalent to the existence of distribution F on Q such that k' = FV,
where £V denotes the vertical lifting of F, ic. if X = X'9/3q* is a vector field in
F, then XV = X'9/8¢'".

Theorem 2. Let L be a completely degenerate Lagrangian such that /(' is the vertical

lifting of an integrable distribution F’ on @), then the tensors 5, 8,8, A, 8/8t all
project to T'Q x R/ K which locally has the form TAM x N x R.

Progf. It is clear that all the tensors and vector fields project because of proposi-
tions 5 and corollaries 3 and 4. The local structure of the quotient space can be
obtained from the following considerations. The vertical bundle V(T'Q x R) can
be identified with the Whitney sum of two copies of the vector bundle J'(R, Q)
over @ x R. In general, if £ — A is a vector bundle over M, the vertical vector
bundie V{ E) is isomorphic to £ @& F, the identification provided by the bundie map
(£,¢Ye Ed Evd/dt(£ + ()} |,-y€ T £. In this sense the distribution K, being
the vertical lifting of F, can be identified with a sub-bundle F of TQ xR — @ x R.
The quotient manifold @/ F will be denoted by A; then it is easy to show that the
total quotient manifold TQ x R/ A" is locally diffeomorphic to T x N x R where
N is a leaf of the integrable distribution F. Let m be a point in M, ie. a leaf of
the integrable distribution F' in Q. We will denote this leaf by /V; then, because of
the fibration property of I, hence of /7, there cxists an open neighbourhood U of
m such that 7=}(U) = U x N x R. Locally, Q@ x R can be factorized as M x N x R
and the distribution K is preciscly the tangent bundle of N in this factorization. O

422 dim V(RK) < dim I, For general type 11 Lagrangians is impossible to go
beyond the generic result on projeciability of the natural tensors in TQ x R unless
we make some specific assumptions on the structure of /. In particular there is an
important family of Type III Lagrangians extending the particular case of Lagrangians
such that K is a tangent algebra considered in [4] and the Lagrangians such that K

is an s-tangent distribution considered in [2].
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Definition 1. A distribution D on TQ x R will be said to be almost tangent if there
exist two integrable distributions £ C F on Q x R locally gencrated by families of
vector fields Xy,..., X and ¥},...,Y] respectively, such that D is locally generated
by the family of vector fields X‘('), ey Xil); YV,..., Y)Y, where X(W denotes the
first extension of the vector field X' and YV denotes the vertical lifting of Y.

We will denote the almost tangent distribution D as EMW @ FY. It is clear
that if £ = F, the distribution D is an s-tangent distribution as in [2] and if E is
time-independent, D is simply TE with the notation in [4]. It is also evident from
the definition that if a degenerate Lagrangian has gauge distribution A" of almost
tangent type E() @ FY, then the Lagrangian L is a projectable of type III with
dim V(K) =dim F < dim F+dim E = dim K.

Corollary 5. Let L be a type III Lagrangian function such that & = EV o FV is
almost tangent and time-independent, then the tensors S, S, S, A, 8/8t all project
to TQ x R/K which has locally the form TM x N x R, where M is transverse to
a leaf of F and N is the quotient of a leaf of F by E.

Proof. Applying theorem 2, the quotient space corresponding to the gauge distribu-
tion K = FY is TM x P x R, where P is a leaf of F and M is transverse to the
foliation F. But the gauge distribution stili contains ; then F defines a foliation of
F, hence the quotient space has the form T'A x N x R where N = P/E. O

Linear Lagrangians on Lie groups. The most significant example of this situation
happens when we consider linear Lagrangians in groups defined by left-invariant 1-
forms. Let G be a Lie group with Lie algebra g. We will identify the dual g* of
the Lie algebra g with the space of left-invariant 1-forms on G. In other words if
u € T G then there exists a unique left-invariant 1-form «, such that o, (e) = g,
defined by o, (g) = L. Then we can consider the Lagrangian function on TG x R

L,v(g.g.t) = (c,(9),0) - V(g.1) (34)

with V' a G-invariant function on G x B. It is easy 10 check that the Cartan 1-form
@,y of L, is given by

O,v =150, - Vdt (33)
and the Cartan 2-form ©, ,, = d©, ,, is given by
Q,v =r1gda, —dV AdL. (36)

Proposition 6. In the conditions above the gauge distribution KN of L, 859,09,
the quotient space TG x R/ A" is isomorphic to O, x [t where (2, denotes the co-
ajoint orbit of G passing through u, and the reduced dynamics is the cosymplectic
Hamiltonian system defined by the projected function V.

Proof. From equation (36), we easily get that V(TG x R) = g is contained in
kerQ, ,,, and this is just the vertical part. Using the left decomposition of TG =
G x g, the horizontal vector Z fields on K, satisfying llzda# = (. It suffices to
consider ieft-invariant vector licids. Then, the previous condition is equivaient to the
cquation in the tangent space at the identity clement

#([Z(e),£]})=0  V{eg (37
in other words, Z € ' if Z(e¢) € g,,, the isotropy algebra of p. O



A geometric classification of Lagrangian functions 3367

Remarks. (i) This theorem is the Lagrangian counterpart of the Kostant-Kirillov-
Souriau theorem and gives an alternative description of coadjoint orbits in terms of
tangent bundle geometry.

(i) If G, = G, or equivalently if x is a 1-cocycle in Chevalley cohomology,
then L, is a zero-gauge equivalent Lagrangian because da, = 0. That means that
Q,=0and TGxR/K =R.

(iii} A particular case of this result has been used recently to discuss the quantiza-
tion and structure of gauge theories in coadjoint orbits (see for instance {1} and {3}).
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